
Abstract. A multibaker map with ``kinetic energy'' is
proposed which incorporates an external ®eld. The map
is volume-preserving, time-reversal symmetric and con-
serves total energy. In an appropriate macroscopic limit,
the particle distribution is shown to obey a Smoluchow-
ski-type equation. For the cases without any external
®eld and with a constant external force, the nonequilib-
rium stationary states are constructed by solving the
evolution equation of the partially integrated distribu-
tion functions. These states are described by singular
functions such as incomplete Takagi functions and
Lebesgue's singular functions. In an appropriate mac-
roscopic limit, the mass ¯ows for the stationary states
are shown to be identical to the ones expected from the
Smoluchowski equation and a ``heat ¯ow'' proportional
to the local energy gradient appears. The Gaspard±
Gilbert±Dorfman entropy production is calculated for
the stationary states and is shown to be positive.
Particularly, for the case with a constant external force,
when the energy distribution is independent of the
spatial distribution, the entropy production reduces to
the one consistent with classical thermodynamics. The
result shows that there exists a volume-preserving driven
multibaker map whose entropy production is consistent
with classical thermodynamics.
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1 Introduction

The emergence of irreversible behaviors and the under-
standing of microscopic entropy production are long-
standing problems in statistical mechanics [1±5]. Recent-

ly, stimulated by the progress of dynamical systems
theory, the problems have been extensively studied
mainly from two di�erent points of view (Ref. [6] and
references therein). On the one hand [6±12], the dynamics
is modi®ed in such a way that a ®ctitious damping force
is introduced to avoid an uncontrolled growth of the
kinetic energy due to an external driving force, while it
preserves time reversibility. For such systems, called
thermostated systems, nonequilibrium stationary states
are realized as Sinai±Ruelle±Bowen (SRB) states and
they fully characterize transport properties such as a
transport law, transport coe�cients and their ¯uctua-
tions. For example, Ohm's law and Einstein's relation
have been rigorously proved for the driven thermostated
Lorentz gas [8]. For thermostated systems, the Gibbs
entropy of a nonequilibrium stationary state is not well
de®ned as a result of the singular nature of the SRB
states, but the Gibbs entropy production is well de®ned
and is related to the thermodynamic entropy production
(cf. Refs. [6, 10] and references therein). On the other
hand [4, 13±18], nonequilibrium stationary states have
been investigated for open Hamiltonian systems such as
the Lorentz gas and an area-preserving multibaker map.
In this case, the nonequilibrium stationary states are
described by fractal distributions similar to the SRB
states. The latter approach is based on the belief that the
underlying microscopic dynamics is Hamiltonian and
that the nonequilibrium states are established by boun-
dary conditions. In this case, because of the fractality of
the stationary distributions, the entropy production is
calculated with the aid of the coarse grained entropy and,
for an open dyadic multibaker map [18], it reduces to a
thermodynamic expression in the macroscopic limit. The
interrelation of the two approaches has been discussed in
Refs. [19±21]. We note that, in both approaches, the
Gallavotti±Cohen hypothesis [11] plays an important
role. It asserts that the microscopic dynamics of an N -
body system for large N is of hyperbolic character.

The multibaker map [13] is a lattice extension of the
conventional baker transformation, which exhibits a
deterministic di�usion. For the simplest dyadic area-
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preserving multibaker map, nonequilibrium stationary
states were constructed with the aid of Takagi-type
functions [16, 18]. The multibaker maps and their gen-
eralizations are extensively used to study transport
properties including the problem of irreversible entropy
production [12, 16, 18±21]. However, the multibaker
maps used so far can only describe the mass transport
since they do not have energy. Also, as pointed out by
Breymann et al. [20], the conventional multibaker map
mimicking di�usion with drift can have an entropy
production consistent with classical thermodynamics,
only when the dynamics is dissipative. Therefore, it is
interesting to propose and investigate an area-preserving
driven multibaker map which includes energy and whose
entropy production is consistent with classical thermo-
dynamics.

In this paper, we introduce and investigate a multi-
baker map with energy and which is volume-preserving
and time-reversal symmetric. As shown in Sect. 2, an
external ®eld can be introduced by requiring the con-
servation of total energy and of the phase-space volume.
The evolution equation of the measure is derived in
Sect. 3 and the macroscopic limit is studied in Sect. 4. It
is found that, in the macroscopic limit, the local energy
distribution function obeys the Smoluchowski-type
equation. In Sect. 5, microscopic distributions for the
stationary states are investigated in detail for the cases
without any external ®eld and with a constant external
force. In both cases, the nonequilibrium stationary states
are described by fractal distributions and their transport
properties agree with a phenomenological theory based
on the Smoluchowski equation. The entropy production
for the nonequilibrium stationary states is investigated
in Sect. 6 and is shown to be consistent with classical
thermodynamics when there is a drift in the mass
transport. Section 7 is devoted to concluding remarks. In
the Appendix, we derive the stationary distributions for
the dissipative multibaker map introduced by TeÂ l and
coworkers [19, 20] and compare the results with the
conservative multibaker map with energy.

2 Multibaker map with energy

We introduce a multibaker model which is a caricature
of the Lorentz gas and which incorporates both energy

and an applied ®eld. First, we observe that the phase-
space dimension is 3 for the ®rst return map of the
Lorentz gas: 2 for the velocity direction and the hitting
angle at the scatterer and 1 for the kinetic energy. The
conventional multibaker maps mimic the return map of
the Lorentz gas on the constant kinetic energy surface. It

is therefore natural to introduce a ``kinetic energy
variable'' E in addition to the internal coordinates
�x; y� for each cell n. We also note that the phase-space
volume of the Lorentz gas at each scatterer is
proportional to the square root of the kinetic energy
E. Hence in our multibaker model, we assume that the
sectional phase-space area for each energy value E
depends on E. Then the phase space C of our model is
(cf. Fig. 1)

C � f�n; x; y;E�jn 2 Z; E 2 R�;
0 � x � a�E�; 0 � y � a�E�g ; �1�

where Z and R� stand for the sets of integers and
of positive real numbers, respectively, and a�E� is
a positive and increasing function of the kinetic energy E.

Now we turn to the dynamics, which is invertible,
area-preserving, energy-conserving and time-reversal
symmetric. In order to control the di�usion coe�-
cient, we use a three-strip version. As in the Lorentz
gas, the dynamics depends on the presence of an
external ®eld. So we consider the two cases sepa-
rately.

2.1 Free dynamics

When there is no external ®eld, the system exhibits pure
di�usion and the kinetic energy is preserved. Thus, we
have (cf. Fig. 2)

where the parameter l (0 < l � 1=2� determines the
di�usion coe�cient, s � 1ÿ 2l, and the subscript U � 0
stands for the absence of the external ®eld. In general,
the di�usion coe�cient may depend on the kinetic
energy, but for simplicity, it is assumed to be indepen-
dent of E. The map BU�0 is clearly volume-preserving.

Fig. 1. Schematic representation of the phase space C. The
sectional area at ``kinetic energy'' E depends on E

BU�0�n; x; y;E� �

nÿ 1; xl ; l y;E
� �

; x 2 �0; la�E��,

n; xÿ la�E�
s ; sy � la�E�;E

� �
; x 2 la�E�; �1ÿ l�a�E��� ,

n� 1;
xÿ �1ÿ l�a�E�

l ; ly � �1ÿ l�a�E�;E
� �

; x 2 �1ÿ l�a�E�; a�E�� � ,

8>>>>>><>>>>>>:
�2�
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Moreover, it is time-reversal symmetric in the sense that
it satis®es

I BU�0 I � Bÿ1U�0 ; �3�
where the involution I is given by

I �n; x; y;E� � n; a�E� ÿ y; a�E� ÿ x;E� � : �4�

2.2 Dynamics under an external ®eld

Now we consider the case where there exists an external
®eld derived from a potential energy U which is a
function of the site coordinate n. We require the
dynamics to preserve both the total energy and the
phase-space volume and to be invertible and time-
reversal symmetric with respect to the involution I .
These requirements determine the dynamics as follows.

1. As a result of the total energy conservation, when
a point of the site n is mapped to the site n� 1, its
kinetic energy changes from E to E ÿ D�U�n�, where
D�U�n� � U�n� 1� ÿ U�n� is the potential energy dif-
ference.

2. Because of the energy dependence of the phase-
space volume, the transition rates l�n from the site n to
the sites n� 1 should depend on the external potential U
as well as on the site coordinate n.

3. Since the map BU is onto, conditions 1 and 2 give

l�nÿ1a E ÿ DÿU�n�� �2�sna E� �2�lÿn�1a E ÿ D�U�n�� �2

� a E� �2 ;
�5�

where sn is the transition rate from the site n to itself:
sn � 1ÿ l�n ÿ lÿn . Di�erentiating Eq. (5) with respect to
U�n� 1� and setting U � 0, one obtains a di�erential
equation for a�E�:

ÿ2la�E� da�E�
dE
� @ l�nÿ1 � sn � lÿn�1

ÿ �
@U�n� 1�

� �
U�0

a�E�2 � 0 ;

which has a solution a�E� � a exp�cE� with constants
a�> 0� and c. As a�E� is an increasing function of E,
c > 0 and one can always set c � 1 by changing the unit
of the energy, i.e., a�E� � a exp�E�.

4. The time-reversal symmetry with respect to the
involution I imposes the condition

lÿn � l�nÿ1 exp 2 U�n� ÿ U�nÿ 1�� �f g : �6�
5. As the self-transition rate sn is not ®xed by the

above prescriptions, we assume that it is independent of
the potential U as U is constant over each cell, i.e.,
sn � 1ÿ 2l.

In short, we obtain the following (cf. Fig. 3)
For x 2 �0; lÿn a�E��,

BU�n; x; y;E� �
�

nÿ 1;
x

l�nÿ1 exp ÿDÿU�n�� � ;

l�nÿ1 exp ÿDÿU�n�� � y; E ÿ DÿU�n�
�
: �7�

For x 2 �lÿn a�E�; �1ÿ l�n �a�E��,

BU�n; x; y;E� � n;
xÿ lÿn a�E�

s
; sy � l�n a�E�; E

� �
:

�8�
For x 2 ��1ÿ l�n �a�E�; a�E��,
BU�n; x; y;E�

�
�

n� 1;
xÿ �1ÿ l�n �a�E�

lÿn�1 exp ÿD�U�n�� � ;

lÿn�1y � �1ÿ lÿn�1�a�E�
� �

exp�ÿD�U�n��;

E ÿ D�U�n�
�
: �9�

In the above, the parameters l�n satisfy

l�n �lÿn � 2l ; �10�

lÿn �l�nÿ1 exp 2 U�n� ÿ U�nÿ 1�� �f g ; �11�

where D�U�n� � U�n� 1� ÿ U�n� and s � 1ÿ 2l. The
map BU is invertible and time-reversal symmetric in
the sense that IBUI � Bÿ1U and preserves the total
energy E � U and the phase-space volume. Also, for
a ®xed value of the total energy E � U, the map is
hyperbolic.

We note that the inverse of BU is given by the fol-
lowing equations.

Fig. 3. The multibaker map on the constant total energy surface:
the case with a constant external force

Fig. 2. The multibaker map on the constant total energy surface:
the case without an external ®eld
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For y 2 �0; l�n a�E��,
Bÿ1U �n; x; y;E� �

�
n� 1; lÿn�1 exp ÿD�U�n�� � x;

y
lÿn�1 exp ÿD�U�n�� � ; E ÿ D�U�n�

�
:

�12�
For y 2 �l�n a�E�; �1ÿ lÿn �a�E��,
Bÿ1U �n; x; y;E� �

�
n; sx� lÿn a�E�; y ÿ l�n a�E�

s
; E
�
:

�13�
For y 2 ��1ÿ lÿn �a�E�; a�E��,
Bÿ1U �n; x; y;E� �

�
nÿ 1; l�nÿ1 x� �1ÿ l�nÿ1�a�E�

� �
� exp ÿDÿU�n�� �; y ÿ �1ÿ lÿn �a�E�

l�nÿ1 exp ÿDÿU�n�� � ;

E ÿ DÿU�n�
�
: �14�

3 Evolution equation and ¯ow

We consider the equation of motion of the states, which
are represented by measures. Since BU is volume-

preserving, we consider the time evolution equation of
the partially integrated distribution function Gt for a
®xed total energy E:

Gt�n; x; y;E� �
Zy

0

dy0q0 Bÿt
U �n; x; y0;E ÿ U�n���ÿ

; �15�

where q0 is the initial distribution function and E
denotes here the total energy. Its evolution equation can
be obtained from Eqs.(12)±(14).
For y 2 �0; l�n an�E��,
Gt�1�n; x; y;E� � lÿn�1 exp ÿD�U�n�� �

� Gt

�
n� 1; lÿn�1 exp ÿD�U�n�� � x;

y
lÿn�1 exp ÿD�U�n�� � ; E

�
: �16�

For y 2 �l�n an�E�; �1ÿ lÿn �an�E��,
Gt�1�n; x; y;E� � lÿn�1 exp ÿD�U�n�� �
� Gt n� 1; lÿn�1 exp ÿD�U�n�� � x; an�1�E�; E

ÿ �
� s Gt

�
n; sx� lÿn an�E�; y ÿ l�n an�E�

s
; E
�
: �17�

Fig. 4a±e. Incomplete Takagi
functions Tn�z� versus z associ-
ated with the intracell distribu-
tions along the contracting
y-direction for the case without
an external ®eld. The ordinate is
Tn�z�=l. The system consists of
nine cells and n is the cell
coordinate. The parameter l has
the value l � 0:3
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For y 2 ��1ÿ lÿn �an�E�; an�E��,
Gt�1�n; x; y;E� � lÿn�1 exp ÿD�U�n�� �

� Gt n� 1; lÿn�1 exp ÿD�U�n�� � x; an�1�E�; E
ÿ �

� s Gt n; sx� lÿn an�E�; an�E�; E
� �

� l�nÿ1 exp ÿDÿU�n�� �

� Gt

�
nÿ 1; l�nÿ1x� �1ÿ l�nÿ1�an�E�

� �
� exp ÿDÿU�n�� �; y ÿ �1ÿ lÿn �an�E�

l�nÿ1 exp�ÿDÿU�n�� ;E
�
; �18�

where an�E� � a�E ÿ U�n�� � a exp�E ÿ U�n��.
Now we turn to the ¯ow. From Eq. (18), the proba-

bility distribution Pt�n;E� �
R an�E�
0 dxGt�n; x; an�E�;E�

per site and per energy is found to obey an equation of
continuity

Pt�1�n;E�ÿPt�n;E�
� ÿJnjn�1�E; t� � Jnÿ1jn�E; t� ; �19�

where the probability ¯ow Jnjn�1�E; t� from site n to site
n� 1 at time t is given by

Jnjn�1�E; t� �
Zan�E�

�1ÿl�n �an�E�

dxGt�n; x; an�E�;E�

ÿ
Zlÿn�1an�1�E�

0

dxGt�n� 1; x; an�1�E�;E� : �20�

As easily seen, the evolution Eqs. (16)±(18) give a
stationary solution

G�n; x; y;E� � qeq�E�y : �21�
For this state, the distribution P�n;E� per site and per
energy is given by

P�n;E� � a2e2Eqeq�E� exp ÿ2U�n�� � ; �22�
and the probability ¯ow vanishes

Jnjn�1�E� � l�n P�n;E� ÿ lÿn�1P�n� 1;E�

� 1ÿ lÿn�1
l�n

exp ÿ2D�U�n�� �
� �

l�n P�n;E� � 0 :

�23�

Fig. 5a±e. Incomplete Lebesgue
singular functions fn�z� versus z
associated with the intracell dis-
tributions along the contracting
y-direction for the case with a
constant external force. In order
to compare the distributions to
those without an external ®eld,
the deviation from the uniform
distribution de®ned by
�fn�z� ÿ z�=�lÿ ÿ l�� is plotted.
The system consists of nine cells
and n is the cell coordinate. The
parameters are l� � 0:35 and
lÿ � 0:25
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This stationary state corresponds to the equilibrium
state under the potential U.

4 Macroscopic limit

In this section, we study the macroscopic limit of the
asymptotic evolution of the state assuming that the
initial density q0�n; x; y;E ÿ U�n�� is continuously di�er-
entiable with respect to x. Then from Eqs. (16)±(18), we
®nd that Gt�n; x; y;E� is continuously di�erentiable with
respect to x for all t > 0 and its derivative obeys the
inequalities

k@xGtk � kk@xGtÿ1k � � � � � ktÿ1k@xG1k ; �24�
where k@xGtk � supn;x;y;E j@xGt�n; x; y;E�j and
k � supflÿ2n�1 exp ÿ2D�U�n�� � � �1ÿ 2l�2
� l�2nÿ1 exp ÿ2DÿU�n�� �g � sup�l�n ; 1ÿ 2l� < 1 :

In the above, we have used l�n�1 exp�ÿ2D�U�n�� � l�n
and l�n � lÿn � 2l. Therefore, for long time kt � 1, Gt
becomes x-independent. In this asymptotic regime, we
study the macroscopic limit of the evolution equation
for the probability distribution Pt�n;E� per site and
per energy. By setting y � an�E�, dropping the x-
dependence in Eq. (18) and multiplying the result by
an�E�, one ®nds

Pt�1�n;E� ÿPt�n;E�
� lÿn�1Pt�n� 1;E� � l�nÿ1Pt�nÿ 1;E� ÿ 2lPt�n;E� :

�25�
The macroscopic limit is established by scaling l as

l � s

d2
D ; �26�

and letting s! 0 and d ! 0 with ®nite D, where s and
d are the unit time step and site spacing, respectively
[20]. The ®nite quantity D is the di�usion coe�cient.
Correspondingly, the potential U and the probability
density per energy p � P=d are smooth functions of
X � nd and T � ms. From Eq. (11), one ®nds

l�n � l� dl
@U
@X
� O�d2� :

Therefore, Eq. (25) reduces to

pT�s�X ;E� ÿ pT �X ;E�
s

� l
d2

s
@

@X
2
@U�X �
@X

pT �X ;E� � @pT �X ;E�
@X

� �� �
� O�d�

or by taking the limit d ! 0 and s! 0,

@pT �X ;E�
@T

� D
@

@X
2
@U�X �
@X

pT �X ;E� � @pT �X ;E�
@X

� �
; �27�

which is a Smoluchowski-type equation (e.g., Ref. [22]).

Similarly, the ¯ow Jnjn�1�E; t� is given by

Jnjn�1�E; t� � l�n Pt�n;E� ÿ lÿn�1Pt�n� 1;E� ; �28�
which, in the macroscopic limit, reduces to

j�X ; T ; E� � Jnjn�1�E; t�
s

�ÿ 2D
@U�X �
@X

pT �X ;E�

ÿ D
@pT �X ;E�

@X
: �29�

Because of the positivity of the kinetic energy, the range
of the total energy depends on the site coordinate X .
Hence, the implications of Eqs.(27) and (29) should be
discussed for each concrete case.

It is remarkable that, starting from an area-preserv-
ing and energy-conserving system under an external
®eld, the Smoluchowski-type equation is derived without
the use of a thermostat. The essential ingredient of this
behavior seems to be the rapid increase of the phase
space volume (�e2E) as a function of the kinetic energy,
which seems to prevent the uncontrolled growth of the
kinetic energy due to the external force. At ®rst sight,
this assumption looks rather unphysical since, in the case
of the Lorentz model, the phase-space volume increases
gradually with kinetic energy �� ����

E
p

). However, when
the number of degrees of freedom increases, the phase-
space volume grows more rapidly as a function of kinetic
energy ��ENd=2, for a d-dimensional system consisting of
N particles). Therefore, one can regard the exponential
growth of the phase volume as e�ectively taking into
account the properties of large systems.

5 Nonequilibrium stationary states

So far, we have discussed the macroscopic aspects of the
general model. Since the detailed structures of the
nonequilibrium stationary states as well as the relaxation
modes depend on the explicit form of the external
potential U, we study the nonequilibrium stationary
states under a constant external force F , i.e., U�n� � Fn
for a ¯ux boundary condition, where the multibaker
chain of length N � 1 is connected to two particle
reservoirs at both ends. The distributions of the
reservoirs are assumed to be uniform with respect to
the Lebesgue measure.

First we note that, since the system is uniform, l�n is
expected to be independent of the site coordinate n and
thus,

l� � lÿ � 2l ; lÿ � e2F l� ;

which gives

l� � 2l
1� e�2F : �30�

Secondly, as shown in Sect. 4, the stationary state
distribution is independent of the x-coordinate and thus,
the cumulative distribution obeys the following equa-
tions.

For y 2 �0; l�an�E��,

G1�n; y;E� � lÿeÿF G1

�
n� 1;

y

lÿeÿF ; E
�
: �31�
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For y 2 �l�an�E�; �1ÿ lÿ�an�E��,
G1�n; y;E� � lÿeÿF G1 n� 1; an�1�E�; E� �

� s G1

�
n;

y ÿ l�an�E�
s

; E
�
: �32�

For y 2 ��1ÿ lÿ�an�E�; an�E��,
G1�n; y;E�
� lÿeÿF G1 n� 1; an�1�E�; E� � � s G1 n; an�E�; E� �

� l�eF G1 nÿ 1;
y ÿ �1ÿ lÿ�an�E�

l�eF ; E
� �

; �33�

where an�E� � a�E ÿ nF � � a exp�E ÿ nF � and n � 0;
1; . . . N . The ¯ux boundary condition is imposed by
requiring

G1�ÿ1; y;E� � qÿ�E�y ;

G1�N � 1; y;E� � q��E�y : �34�
By substituting y � an�E� into Eq. (33) and noting
s � 1ÿ 2l, one ®nds

2lG1�n; an�E�;E� � lÿeÿF G1 n� 1; an�1�E�;E� �
� l�eF G1 nÿ 1; anÿ1�E�;E� � :

�35�
Since the solution of Eq. (35) for F � 0 is qualitatively
di�erent from that for F 6� 0, we discuss them
separately.

5.1 Free transport

When F � 0, Eq. (35) together with the boundary
condition Eq. (34) gives the solution

G1�n; a�E�;E� � q��E� ÿ qÿ�E�
N � 2

a�E��n� 1�
� qÿ�E�a�E� : �36�

Note that when F � 0, an�E� is independent of the site
coordinate n.

Then, the solution of Eqs. (31)±(33) is given by

G1�n; y;E�

� q��E� ÿ qÿ�E�
N � 2

�n� 1�y � a�E� Tn
y

a�E�
� �� �

� qÿ�E�y ; �37�
where Tn is the incomplete Takagi-type function and is
de®ned as the unique solution of the functional equation

Tn�z� �
l Tn�1�z=l� � z ; 0 � z � l ,

s Tn��zÿ l�=s� � l ; l � z � 1ÿ l ,

l Tnÿ1��zÿ 1� l�=l� � 1ÿ z ; 1ÿ l � z � 1 ,

8><>:
�38�

with the boundary condition Tÿ1�z� � TN�1�z� � 0. We
remark that the distribution Eq. (37) is absolutely

continuous with respect to the Lebesgue measure and
becomes singular only for an in®nitely long multibaker
chain: N !1.

Now we discuss the transport properties of the sta-
tionary state. Let Pn and �En be, the particle distribution
and the average total energy per site, respectively:

Pn �
Z1
0

dE a�E�G1�n; a�E�;E� ;

�En �
Z1
0

dE Ea�E�G1�n; a�E�;E� :

Then

Pn � P� ÿ Pÿ
N � 2

�n� 1� � Pÿ ; �39�

�En �
�E� ÿ �Eÿ
N � 2

�n� 1� � �Eÿ ; �40�
where

P� �
Z1
0

dE a�E�2q��E� ;

�E� �
Z1
0

dE Ea�E�2q��E� :

Eqs. (39) and (40) imply that the particle distribution
and the average total energy linearly depend on the site
coordinate n.

For the stationary state Eq. (37), the particle ¯ow

JM
njn�1 �

R1
0

dEJnjn�1�E� and the energy ¯ow

JE
njn�1 �

R1
0

dE E Jnjn�1�E� are given by

JM
njn�1 �ÿ l

P� ÿ Pÿ
N � 2

� ÿl�Pn�1 ÿ Pn� ; �41�

JE
njn�1 �ÿ l

�E� ÿ �Eÿ
N � 2

� ÿl� �En�1 ÿ �En� ; �42�
which show that the ¯ows are proportional to the
gradient of the distributions. Equation (41) is nothing
but Fick's law of mass transport. These results imply
that the system allows transport governed by a di�usion
equation. The equality of the mass di�usion coe�cient
and the energy di�usion coe�cient is simply due to the
fact that, in the present system, transport is essentially
controlled by the mass transport. We note that similar
energy transport has been numerically studied for the
Lorentz channel by Alonso et al. [23].

Finally, we brie¯y discuss the macroscopic limits of
the ¯ows. Let p�X � � Pn=d be the particle density and
��X � � �En=Pn be the average energy per particle. Then
the particle ¯ow and the energy ¯ow can be rewritten
as

jM�X � �
JM

njn�1
s
� ÿD

@p�X �
@X

; �43�
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jE�X � �
JE

njn�1
s
� ÿD

@p�X ���X �
@X

� ��X �jM�X �

ÿ Dp�X � @��X �
@X

; �44�
which implies the appearence of the heat ¯ow jq�X �
proportional to the gradient of the energy per particle
[24]:

jq�X � � ÿDp�X � @��X �
@X

:

The details of the connection with linear nonequilibrium
thermodynamics will be discussed elsewhere.

5.2 Transport under constant external force

When F 6� 0, Eq. (35) together with the boundary
condition Eq. (34) gives

G1�n; an�E�;E� � A�E�eÿnF � B�E�enF ; �45�
where the coe�cients A�E� and B�E� are functions of
q��E�:
A�E�

� exp��N � 2�F �qÿ�E� ÿ exp�ÿ�N � 2�F �q��E�
2 sinh�N � 2�F a�E� ;

�46�

B�E� � q��E� ÿ qÿ�E�
2 sinh�N � 2�F a�E�eÿNF : �47�

Then, the solution of Eqs.(31)±(33) is given by

G1�n; y;E� � A�E� y
a�E� � B�E�enF fn

y
an�E�
� �

; �48�

where fn is a function similar to the Lebesgue singular
function and is de®ned as the unique solution of the
functional equation

fn�z� �
lÿfn�1�z=l��; 0 � z � l�,
s fn��zÿ l��=s� � lÿ; l� � z � 1ÿ lÿ,
l�fnÿ1��zÿ 1� lÿ�=lÿ� � 1ÿ l�; 1ÿ lÿ � z � 1 ,

8><>:
�49�

with the boundary condition fÿ1�z� � fN�1�z� � z. In
the case of a ®nite chain, the distribution Eq. (48) is
absolutely continuous with respect to the Lebesgue
measure and becomes singular only for an in®nitely
long multibaker chain: N !1. Furthermore, as
discussed in the Appendix, the stationary distribution
Eq. (48) is identical, except for trivial scaling factors, to
that for a dissipative multibaker map of Ref. [20] with
``appropriate'' dissipation.

Now we turn to the transport properties. In order to
average with respect to energy distribution, we need one
assumption: since the kinetic energy is positive, the

domain of the function qÿ�E� is E � ÿF and that of
q��E� is E � �N � 1�F . However, we assume that the
two functions q��E� are nonzero in a common domain
E � max�ÿF ; �N � 1�F ���E0�. Then by multiplying
Eq. (45) by an�E� and averaging it with respect to E over
the interval E � E0, one obtains the following particle
distribution Pn

Pn � �Aeÿ2nF � �B ; �50�
where �A and �B are given by:

�A �
Z1
E0

dE a�E�A�E� � Pÿ ÿ P�
2eÿNF sinh�N � 2�F ; �51�

�B �
Z1
E0

dE a�E�B�E�

� P� exp��N � 2�F � ÿ Pÿ exp�ÿ�N � 2�F �
2 sinh�N � 2�F ; �52�

with P� the particle numbers per site at the edges:

Pÿ � e2F
Z1
E0

dE a�E�2qÿ�E� ;

P� � exp�ÿ2�N � 1�F �
Z1
E0

dE a�E�2q��E� :

Similarly, the average total energy per site En is given by

�En � �AEe
ÿ2nF � �BE ; �53�

where �AE and �BE are

�AE �
Z1
E0

dE E a�E�A�E� �
�Eÿ ÿ �E�

2eÿNF sinh�N � 2�F ; �54�

�BE �
Z1
E0

dE E a�E�B�E�

�
�E� exp��N � 2�F � ÿ �Eÿ exp�ÿ�N � 2�F �

2 sinh�N � 2�F ; �55�

with �E� the average energies per site at the edges:

�Eÿ � e2F
Z1
E0

dE E a�E�2qÿ�E� ;

�E� � exp�ÿ2�N � 1�F �
Z1
E0

dE E a�E�2q��E� :

The particle ¯ow JM
njn�1 and total energy ¯ow JE

njn�1 are
calculated as before

JM
njn�1 �ÿ 2l

eF ÿ eÿF

eF � eÿF
�B ; �56�

JE
njn�1 �ÿ 2l

eF ÿ eÿF

eF � eÿF
�BE : �57�
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All these results are expected from the Smoluchowski
equation for constant external force. Hence, the system
exhibits transport governed by a Smoluchowski equa-
tion.

This can also be seen in the macroscopic limit of the
particle ¯ow:

jM�X � �
JM

njn�1
s
� ÿ2DFp�X � ÿ D

@p�X �
@X

; �58�

where F � F =d is the macroscopic ®eld strength. The
¯ow Eq. (58) is nothing but the ¯ow for the Smolu-
chowski equation under constant external force F. The
macroscopic limit of the energy ¯ow can be calculated
as before

jE�X � �
JE

njn�1
s
� ��X �jM�X � ÿ Dp�X � @��X �

@X
; �59�

where ��X � is the average energy per particle, and which
again implies the existence of the heat ¯ow jq�X �
proportional to the gradient of the energy per particle
[24]:

jq�X � � ÿDp�X � @��X �
@X

:

6 Entropy production for stationary states

For thermostated systems, the temporal variation of the
conventional Gibbs entropy provides a good measure of
the irreversible entropy production because the dynam-
ics is not conservative (Refs. [6, 10] and references
therein). On the other hand, for conservative systems,
the Gibbs entropy is kept constant with time and thus, it
does not provide physically relevant information. As
emphasized by Gaspard [18], for nonequilibrium sta-
tionary states represented by fractal distributions, the
Gibbs entropy does not exist for in®nitely large systems
because of the fractality of the stationary states and the
coarse grained entropy should be used as the micro-
scopic entropy. Based on this view, Gaspard studied the
entropy balance for deterministic systems, particularly
for the dyadic multibaker map [18]. His approach was
generalized by Gilbert and Dorfman [21] for systems
with generating partitions. Similar approaches based on
the coarse grained entropy balance have been developed
by TeÂ l and coworkers [19, 20] and by Nicolis and Daems
[25]. In this section, following Gaspard's approach, we
calculate the coarse grained entropy production for the
stationary states studied in Sect. 5.

We begin with the coarse grained entropy of a set
A with respect to the measure m used by Gilbert and
Dorfman [21]:

S�A : fBjg� �
X
Bj�A

m�Bj� ln l0�Bj�
m�Bj� ; �60�

where fBjg is a partition of the phase space, l0 is the
reference Lebesgue measure and the summation is taken
over all Bj included in a set A. In Ref. [21], the authors
assumed that the partition fBjg is generating, but here
we do not assume it and rather follow the line of
thoughts expressed in Ref. [18].

Now we brie¯y review the calculation of the entropy
production. Let St�A : fBjg� be the coarse grained en-
tropy of set A with respect to the measure mt at time t,
then the entropy change is given by

DSt�A : fBjg� � St�1�A : fBjg� ÿ St�A : fBjg� ;
which is the sum of the entropy ¯ow DeSt�A : fBjg� and
the entropy production DiSt�A : fBjg�. Since the entropy
¯ow is given by [18, 21]

DeSt�A : fBjg� � St�Bÿ1U A : fBjg� ÿ St�A : fBjg� ;
one obtains

DiSt�A : fBjg� � St�1�A : fBjg� ÿ St�Bÿ1U A : fBjg� : �61�
Since the map BU preserves the Lebesgue measure,

one has l0�Bj� � l0�Bÿ1U Bj�. Also Bj � A implies

Bÿ1U Bj � Bÿ1U A, and mt�1�Bj� � mt�Bÿ1U Bj� by de®nition.

Therefore,

St�1�A : fBjg� �
X
Bj�A

mt�1�Bj� ln l0�Bj�
mt�1�Bj�

�
X

Bÿ1U Bj�Bÿ1U A

mt�Bÿ1U Bj� ln l0�Bÿ1U Bj�
mt�Bÿ1U Bj�

� St�Bÿ1U A : fBÿ1U Bjg� ; �62�
and hence,

DiSt�A : fBjg�
� St�Bÿ1U A : fBÿ1U Bjg� ÿ St�Bÿ1U A : fBjg� : �63�

We note that an entropy production of a set A can be
calculated with the aid of Eq. (63) only when the set
Bÿ1U A has the form

Bÿ1U A � [some iBÿ1U Bi � [some jBj :

For open ®nite systems, the entropy production thus
de®ned takes a ®nite value and remains constant when
the size of the partitioning sets Bj is not too small and
not too large and it vanishes when the size of Bj is
vanishingly small [18, 21]. Based on this observation, we
use a rough partition consisting of the cells

�n; x; y;E�j0 � x � an�E0�; 0 � y � l�an�E0�;E0 � E � E0 � DEf g;
�n; x; y;E�j0 � x � an�E0�; l�an�E0� � y � �1ÿ lÿ�an�E0�;E0 � E � E0 � DEf g;
�n; x; y;E�j0 � x � an�E0�; �1ÿ lÿ�an�E0� � y � an�E0�;E0 � E � E0 � DEf g ;

8><>: �64�
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and focus our attention on the macroscopic expression
of the entropy production for a set A � BU �n; x; y;E�jf
0 � x � an�E�; 0 � y � an�E�;E0 � Eg. Then, by a
straightforward calculation and after taking the limit
DE! 0, one ®nds

DiS�A : fBjg� �
Z1
E0

dE si�E� ; �65�

where the entropy production per energy si�E� is given
by

si�E� � ÿ lÿPn�1�E� ln e
ÿ2F Pn�E�
Pn�1�E�

ÿ l�Pnÿ1�E� ln e
2F Pn�E�
Pnÿ1�E� ; �66�

with Pn�E� � an�E�G1�n; an�E�;E� the distribution per
site and per energy. We recall that Pn�E� obeys the
equation

2lPn�E� � lÿPn�1�E� � l�Pnÿ1�E� ; �67�

l� � 2l
1� e�2F : �68�

Since ÿ ln z is a concave function of z, the entropy
production per energy si�E� is non-negative
si�E� � ÿ flÿPn�1�E� � l�Pnÿ1�E�g

� ln
lÿeÿ2F Pn�E� � l�e2F Pn�E�

lÿPn�1�E� � l�Pnÿ1�E� � ÿ2lpn�E� ln 1 � 0 ;

and vanishes only when e2F Pn�1�E� � eÿ2F Pnÿ1�E�. It
is remarkable that the condition of vanishing entropy
production si�E� � 0 is equivalent the condition of
vanishing ¯ow Jnjn�1�E� � 0.

The relation between the entropy production and
the ¯ow becomes more explicit when one considers the
macroscopic limit. By setting Pn�E�=d � p�X ;E�,
F =d �F and l � sD=d2, and taking the limit of s! 0
and d ! 0, we have

ri�E� � si�E�
sd

� 1

Dp�X ;E� 2DFp�X ;E� � D
@p�X ;E�
@X

� �2

; �69�

which is proportional to the square of the ¯ow. Hence,
the entropy production per unit time and per unit length
is given by

DiS
sd
�
Z1
E0

dEri�E�

�
Z1
E0

dE
1

Dp�X ;E� 2DFp�X ;E� � D
@p�X ;E�
@X

� �2

:

�70�
In particular, when the energy distribution is indepen-
dent of the spatial distribution

p�X ;E� � p�X �h�E� ; with
Z1
E0

dE h�E� � 1 ;

the entropy production DiS becomes

DiS
sd
� 1

Dp�X � 2DFp�X � � D
@p�X �
@X

� �2

: �71�

As discussed by Breymann et al. [20], this result agrees
with classical thermodynamics since the entropy pro-
duction is proportional to the square of the particle
¯ow Eq. (58). We emphasize that the entropy produc-
tion which is consistent with classical thermodynamics
can be obtained for a conservative system. Therefore,
in order to be consistent with classical thermody-
namics, the inclusion of dissipation is not always
necessary.

7 Conclusions

We have constructed a multibaker map with ``kinetic
energy'' to which an external ®eld can be applied. The
map is volume-preserving, time-reversal symmetric and
conserves total energy. In an appropriate macroscopic
limit, the particle distribution obeys a Smoluchowski-
type equation. For the cases without an external ®eld
and with a constant external force, the nonequilibrium
stationary states are constructed by solving the evolution
equation of the partially integrated distribution func-
tions. These states are described by singular functions
such as an incomplete Takagi function and Lebesgue's
singular functions. Moreover, in an appropriate macro-
scopic limit, the mass ¯ow for the stationary states is
identical to the one expected from the Smoluchowski
equation and there appears a ``heat ¯ow'' proportional
to the local energy gradient. The Gaspard±Gilbert±
Dorfman entropy production is calculated for the
stationary states and is shown to be positive. Particu-
larly, for the case with a constant external force, when
the energy distribution is independent of the spatial
distribution, the macroscopic limit of the entropy
production is consistent with classical thermodynamics.
We give a few more remarks.

1. In contrast to the observation for the conventional
multibaker map by Breymann et al. [20], the entropy
production which is consistent with classical thermody-
namics can be obtained for a conservative driven mul-
tibaker map. The key ingredient of our model is the
variation of the phase-space volume with respect to the
site coordinate n. This variation somehow plays the role
of phase-space contraction and, as a result, the entropy
production becomes similar to that for the dissipative
multibaker model.

2. As discussed in the Appendix, there exists a close
relation between the nonequilibrium stationary states of
the present model and the dissipative multibaker
map studied by Breymann, et al. [20] with ``appropriate
dissipation''. Indeed, the stationary distributions for
both cases are identical except for a trivial scaling
factor.
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3. The nonequilibrium stationary distributions de-
rived in Sect. 5 are absolutely continuous with respect to
the Lebesgue measure for the ®nite mutibaker chain.
They become singular only for the in®nite chain. As
shown in the Appendix, this is also the case for a dissi-
pative multibaker chain provided that the distributions
of the particle reservoirs are uniform with respect to the
Lebesgue measure. It is remarkable that the present
conservative multibaker map shares common properties
with the dissipative multibaker map.

4. Since the potential U is arbitrary and the evolution
equation of the distribution function reduces to a
Smoluchowski-type equation in the macroscopic limit,
the present model for a random potential U provides
a deterministic model of the Brownian motion in a
random environment [26].
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Appendix: dissipative multibaker map

In this appendix, we construct nonequilibrium station-
ary states for the three-strip dissipative multibaker map
studied by Breymann et al. [20].

Bd�n; x; y� �
�nÿ 1; x

lÿ ;
~lÿ y�; x 2 �0; lÿ�,

�n; xÿ lÿ
s ; sy � ~lÿ�; x 2 �lÿ; 1ÿ l��,

�n� 1;
xÿ �1ÿ l��

l�
;~l�y � 1ÿ ~l��; x 2 �1ÿ l�; 1�,

8>>>>><>>>>>:
�A1�

where l� > 0; ~l� > 0; s > 0 and l� � lÿ � s � ~l� � ~lÿ

�s � 1. Note that, when l� 6� ~l� (or lÿ 6� ~lÿ), the
map Bd is nonconservative. As before, the evolution
equation for the partially integrated distribution func-

tion Gt�n; x; y� �
R y
0 dy0qt�n; x; y0� is derived where qt is

the density function at time t, and we look for its
stationary solution under the boundary condition:

Gt�ÿ1; x; y� � qÿy; Gt�N � 1; x; y� � q�y : (A2)

Then we ®nd that the partially integrated distribution
function of the stationary state is independent of x and is
given by

G1�n; y� � A
l�

lÿ

� �n

gn�y� � Bhn�y� ; �A3�

where the constants A and B depend on q� and the
functions gn�y� and hn�y� are unique solutions of the
functional equations

gn�y� �
l� gn�1�y=~lÿ�; (0 � y � ~lÿ),
s gn��y ÿ ~lÿ�=s� � l�; (~lÿ � y � 1ÿ ~l�),

lÿ gnÿ1��y ÿ 1� ~l
��=~l�� � 1ÿ lÿ; (1ÿ ~l� � y � 1) ,

8><>:
�A4�

and

hn�y� �
lÿ hn�1�y=~lÿ�; (0 � y � ~lÿ),
s hn��y ÿ ~lÿ�=s� � lÿ; (~lÿ � y � 1ÿ ~l�),

l� hnÿ1��y ÿ 1� ~l
��=~l�� � 1ÿ l�; (1ÿ ~l� � y � 1) ,

8><>:
�A5�

with the boundary conditions gÿ1�y� � gN�1�y� �
hÿ1�y� � hN�1�y� � y. Note that, for a ®nite open
multibaker chain, the functions gn and hn are di�eren-
tiable with ®nite derivatives almost everywhere with
respect to the Lebesgue measure and, as a result, the
stationary measure is absolutely continuous with respect
to the Lebesgue measure. The stationary measure is
singular only for an in®nite or closed multibaker chain.

The ¯ow associated with the stationary state is

Jnjn�1 � l�G1�n; 1� ÿ lÿG1�n� 1; 1�
� �l� ÿ lÿ�B ; �A6�

which is independent of A. Because of this fact, we call
the part of G1�n; y� proportional to B the ¯ow-carrying
component and the one proportional to A the ¯ow-non-
carrying component.

Breymann et al. [20] studied the entropy production
of the nonconservative multibaker map Eq. (A1) and
showed that the entropy production has a macroscopic
limit consistent with classical thermodynamics if, and
only if, the equalities l� � ~lÿ and lÿ � ~l� hold. Now we
show that their result can be restated such that the en-
tropy production has a macroscopic limit consistent with
classical thermodynamics if, and only if, the ¯ow-non-
carrying component for an in®nitely long multibaker
chain is absolutely continuous with respect to the Le-
besgue measure. This observation seems to suggest a
close relation between the entropy production and the
singularity of the distribution.

The proof is easy. For an in®nitely long multibaker
chain, the function gn reduces to the function g which is
the solution of

g�y� �
l� g�y=~lÿ�; 0 � y � ~lÿ;
s g��y ÿ ~lÿ�=s� � l�; ~lÿ � y � 1ÿ ~l�;
lÿ g��y ÿ 1� ~l��=~l�� � 1ÿ lÿ; 1ÿ ~l� � y � 1 ;

8><>:
�A7�

which is the cumulative function of the multinomial
measure on the real axis. It is known [27] that the multi-
nomial measure is absolutely continuous with respect to
the Lebesgue measure if, and only if, the equalities
l� � ~lÿ and lÿ � ~l� hold. This completes the proof.

Finally we remark that there exists an interesting
relation between our model and the Breymann±TeÂ l±
Vollmer model with ``appropriate dissipation''. Indeed,
when the conditions l� � ~lÿ and lÿ � ~l� are satis®ed,
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gn�y� � y and hn�y� � fn�y�, where fn�y� is the incom-
plete Lebesgue singular function Eq. (49) discussed in
Sect. 5. Thus, we have

G1�n; y� � A
l�

lÿ

� �n

y � Bfn�y� ; �A8�
which, except for a scaling factor, is identical to the
distribution Eq. (48) obtained in Sect. 5.2. (Note that in
our model l�=lÿ � eÿ2F ).
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